

 Navigation

 	
 index

 	
 next |

 	Salmon 0.5.0 documentation

Welcome to Salmon’s documentation!

Contents:

	Requirements
	Binary Releases

	Requirements for Building from Source

	Installation

	Salmon
	Using Salmon

	Quasi-mapping-based mode (including lightweight alignment)

	Alignment-based mode

	Description of important options

	What’s this LIBTYPE?

	Output

	Misc

	Salmon Output File Formats
	Quantification File

	Command Information File

	Auxiliary File

	Fragment Library Types

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Salmon 0.5.0 documentation

Requirements

Binary Releases

Pre-compiled binaries of the latest release of Salmon for a number different
platforms are available available under the Releases tab [https://github.com/COMBINE-lab/salmon/releases] of Salmon’s GitHub
repository [https://github.com/COMBINE-lab/salmon]. You should be able to
get started quickly byfinding a binary from the list that is compatible with
your platform. If you’re running an old version of Linux and get errors
related to GLIBC, try the pre-compiled “Debian Squeeze” binary.

Requirements for Building from Source

	A C++11 conformant compiler (currently tested with GCC>=4.7 and Clang>=3.4)

	CMake [http://www.cmake.org]. Salmon uses the CMake build system to check, fetch and install
dependencies, and to compile and install Salmon. CMake is available for all
major platforms (though Salmon is currently unsupported on Windows.)

Installation

After downloading the Salmon source distribution and unpacking it, change into the top-level directory:

> cd salmon

Then, create and out-of-source build directory and change into it:

> mkdir build
> cd build

Salmon makes extensive use of Boost [http://www.boost.org]. We recommend installing the most
recent version (1.55) systemwide if possible. If Boost is not installed on your
system, the build process will fetch, compile and install it locally. However,
if you already have a recent version of Boost available on your system, it make
sense to tell the build system to use that.

If you have Boost installed you can tell CMake where to look for it. Likewise,
if you already have Intel’s Threading Building Blocks [http://threadingbuildingblocks.org/] library installed, you can tell CMake
where it is as well. The flags for CMake are as follows:

	-DFETCH_BOOST=TRUE – If you don’t have Boost installed (or have an older
version of it), you can provide the FETCH_BOOST flag instead of the
BOOST_ROOT variable, which will cause CMake to fetch and build Boost locally.

	-DBOOST_ROOT=<boostdir> – Tells CMake where an existing installtion of Boost
resides, and looks for the appropritate version in <boostdir>. This is the
top-level directory where Boost is installed (e.g. /opt/local).

	-DTBB_INSTALL_DIR=<tbbroot> – Tells CMake where an existing installation of
Intel’s TBB is installed (<tbbroot>), and looks for the apropriate headers
and libraries there. This is the top-level directory where TBB is installed
(e.g. /opt/local).

	-DCMAKE_INSTALL_PREFIX=<install_dir> – <install_dir> is the directory to
which you wish Salmon to be installed. If you don’t specify this option,
it will be installed locally in the top-level directory (i.e. the directory
directly above “build”).

There are a number of other libraries upon which Salmon depends, but CMake
should fetch these for you automatically.

Setting the appropriate flags, you can then run the CMake configure step as
follows:

> cmake [FLAGS] ..

The above command is the cmake configuration step, which should complain if
anything goes wrong. Next, you have to run the build step. Depending on what
libraries need to be fetched and installed, this could take a while
(specifically if the installation needs to install Boost). To start the build,
just run make.

> make

If the build is successful, the appropriate executables and libraries should be
created. There are two points to note about the build process. First, if the
build system is downloading and compiling boost, you may see a large number of
warnings during compilation; these are normal. Second, note that CMake has
colored output by default, and the steps which create or link libraries are
printed in red. This is the color chosen by CMake for linking messages, and
does not denote an error in the build process.

Finally, after everything is built, the libraries and executable can be
installed with:

> make install

You can test the installation by running

> make test

This should run a simple test and tell you if it succeeded or not.

 Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Salmon 0.5.0 documentation

Salmon

Salmon is a tool for wicked-fast transcript quantification from RNA-seq
data. It requires a set of target transcripts (either from a reference or
de-novo assembly) to quantify. All you need to run Salmon is a FASTA file
containing your reference transcripts and a (set of) FASTA/FASTQ file(s)
containing your reads. Optionally, Salmon can make use of pre-computed
alignments (in the form of a SAM/BAM file) to the transcripts rather than the
raw reads.

The quasi-mapping-based mode of Salmon runs in two phases; indexing and
quantification. The indexing step is independent of the reads, and only need to
be run one for a particular set of reference transcripts. The quantification
step, obviously, is specific to the set of RNA-seq reads and is thus run more
frequently. For a more complete description of all available options in Salmon,
see below.

The alignment-based mode of Salmon does not require indexing. Rather, you can
simply provide Salmon with a FASTA file of the transcripts and a SAM/BAM file
containing the alignments you wish to use for quantification.

Using Salmon

As mentioned above, there are two “modes” of operation for Salmon. The first,
requires you to build an index for the transcriptome, but then subsequently
processes reads directly. The second mode simply requires you to provide a
FASTA file of the transcriptome and a .sam or .bam file containing a
set of alignments.

Note

Read / alignment order

Salmon, like eXpress, uses a streaming inference method to perform
transcript-level quantification. One of the fundamental assumptions
of such inference methods is that observations (i.e. reads or alignments)
are made “at random”. This means, for example, that alignments should
not be sorted by target or position. If your reads or alignments
do not appear in a random order with respect to the target transcripts,
please randomize / shuffle them before performing quantification with
Salmon.

Note

Number of Threads

The number of threads that Salmon can effectively make use of depends
upon the mode in which it is being run. In alignment-based mode, the
main bottleneck is in parsing and decompressing the input BAM file.
We make use of the Staden IO [http://sourceforge.net/projects/staden/files/io_lib/]
library for SAM/BAM/CRAM I/O (CRAM is, in theory, supported, but has not been
thorougly tested). This means that multiple threads can be effectively used
to aid in BAM decompression. However, we find that throwing more than a
few threads at file decompression does not result in increased processing
speed. Thus, alignment-based Salmon will only ever allocate up to 4 threads
to file decompression, with the rest being allocated to quantification.
If these threads are starved, they will sleep (the quantification threads
do not busy wait), but there is a point beyond which allocating more threads
will not speed up alignment-based quantification. We find that allocating
8 — 12 threads results in the maximum speed, threads allocated above this
limit will likely spend most of their time idle / sleeping.

For quasi-mapping-based Salmon, the story is somewhat different.
Generally, performance continues to improve as more threads are made
available. This is because the determiniation of the potential mapping
locations of each read is, generally, the slowest step in
quasi-mapping-based quantification. Since this process is
trivially parallelizable (and well-parallelized within Salmon), more
threads generally equates to faster quantification. However, there may
still be a limit to the return on invested threads. Specifically, writing
to the mapping cache (see Misc below) is done via a single thread. With
a huge number of quantification threads or in environments with a very slow
disk, this may become the limiting step. If you’re certain that you have
more than the required number of observations, or if you have reason to
suspect that your disk is particularly slow on writes, then you can disable
the mapping cache (--disableMappingCache), and potentially increase the
parallelizability of quasi-mapping-based Salmon.

Quasi-mapping-based mode (including lightweight alignment)

One of the novel and innovative features of Salmon is its ability to accurately
quantify transcripts using quasi-mappings. Quasi-mappings
are mappings of reads to transcript positions that are computed without
performing a base-to-base alignment of the read to the transcript. Quasi-mapping
is typically much faster to compute than traditional (or full)
alignments, and can sometimes provide superior accuracy by being more robust
to errors in the read or genomic variation from the reference sequence.

Salmon currently supports two different methods for mapping reads to transcriptomes;
(SMEM-based) lightweight-alignment and quasi-mapping. SMEM-based mapping is the original
lightweight-alignment method used by Salmon, and quasi-mapping is a newer and
considerably faster alternative. Both methods are currently exposed via the
same quant command, but the methods require different indices so that
SMEM-based mapping cannot be used with a quasi-mapping index and vice-versa.

If you want to use Salmon in quasi-mapping-based mode, then you first
have to build an Salmon index for your transcriptome. Assume that
transcripts.fa contains the set of transcripts you wish to quantify. First,
you run the Salmon indexer:

> ./bin/salmon index -t transcripts.fa -i transcripts_index --type quasi -k 31

This will build the quasi-mapping-based index, using an auxiliary k-mer hash
over k-mers of length 31. While quasi-mapping will make used of arbitrarily
long matches between the query and reference, the k size selected here will
act as the minimum acceptable length for a valid match. Thus, a smaller
value of k may slightly improve sensitivty. We find that a k of 31 seems
to work well for reads of 75bp or longer, but you might consider a smaller
k if you plan to deal with shorter reads. Note that there is also a
k parameter that can be passed to the quant command. However, this has
no effect if one is using a quasi-mapping index, as the k value provided
during the index building phase overrides any k provided during
quantification in this case. Since quasi-mapping is the default index type in
Salmon, you can actually leave off the --type quasi parameter when building
the index. To build a lightweight-alignment (FMD-based) index instead, one
would use the following command:

> ./bin/salmon index -t transcripts.fa -i transcripts_index --type fmd

Note that no value of k is given here. However, the SMEM-based mapping index
makes use of a parameter k that is passed in during the quant phase (the
default value is 19).

Then, you can quantify any set of reads (say, paired-end reads in files
reads1.fq and reads2.fq) directly against this index using the Salmon
quant command as follows:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -1 reads1.fq -2 reads2.fq -o transcripts_quant

If you are using single-end reads, then you pass them to Salmon with
the -r flag like:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -r reads.fq -o transcripts_quant

This same quant command will work with either index (quasi-mapping or
SMEM-based), and Salmon will automatically determine the type of index being
read and perform the appropriate lightweight mapping accordingly.

Note

Order of command-line parameters

The library type -l should be specified on the command line before the
read files (i.e. the parameters to -1 and -2, or -r). This is because
the contents of the library type flag is used to determine how the reads should
be interpreted.

You can, of course, pass a number of options to control things such as the
number of threads used or the different cutoffs used for counting reads.
Just as with the alignment-based mode, after Salmon has finished running, there
will be a directory called salmon_quant, that contains a file called
quant.sf containing the quantification results.

Alignment-based mode

Say that you’ve prepared your alignments using your favorite aligner and the
results are in the file aln.bam, and assume that the sequence of the
transcriptome you want to quantify is in the file transcripts.fa. You
would run Salmon as follows:

> ./bin/salmon quant -t transcripts.fa -l <LIBTYPE> -a aln.bam -o salmon_quant

The <LIBTYPE> parameter is described below and is shared between both modes
of Salmon. After Salmon has finished running, there will be a directory called
salmon_quant, that contains a file called quant.sf. This contains the
quantification results for the run, and the columns it contains are similar to
those of Sailfish (and self-explanatory where they differ).

For the full set of options that can be passed to Salmon in its alignment-based
mode, and a description of each, run salmon quant --help-alignment.

Note

Genomic vs. Transcriptomic alignments

Salmon expects that the alignment files provided are with respect to the
transcripts given in the corresponding fasta file. That is, Salmon expects
that the reads have been aligned directly to the transcriptome (like RSEM,
eXpress, etc.) rather than to the genome (as does, e.g. Cufflinks). If you
have reads that have already been aligned to the genome, there are
currently 3 options for converting them for use with Salmon. First, you
could convert the SAM/BAM file to a FAST{A/Q} file and then use the
lightweight-alignment-based mode of Salmon described below. Second, given the converted
FASTA{A/Q} file, you could re-align these converted reads directly to the
transcripts with your favorite aligner and run Salmon in alignment-based
mode as described above. Third, you could use a tool like sam-xlate [https://github.com/mozack/ubu/wiki]
to try and convert the genome-coordinate BAM files directly into transcript
coordinates. This avoids the necessity of having to re-map the reads. However,
we have very limited experience with this tool so far.

Multiple alignment files

If your alignments for the sample you want to quantify appear in multiple
.bam/.sam files, then you can simply provide the Salmon -a parameter
with a (space-separated) list of these files. Salmon will automatically
read through these one after the other quantifying transcripts using the
alignments contained therein. However, it is currently the case that these
separate files must (1) all be of the same library type and (2) all be
aligned with respect to the same reference (i.e. the @SQ records in the
header sections must be identical).

Description of important options

Salmon exposes a number of useful optional command-line parameters to the user.
The particularly important ones are explained here, but you can always run
salmon quant -h to see them all.

-p / --numThreads

The number of threads that will be used for quasi-mapping, quantification, and
bootstrapping / posterior sampling (if enabled). Salmon is designed to work
well with many threads, so, if you have a sufficient number of processors, larger
values here can speed up the run substantially.

--useVBOpt

Use the variational Bayesian EM algorithm rather than the “standard” EM algorithm
to optimize abundance estimates. The details of the VBEM algorithm can be found
in [2]_, and the details of the variant over fragment equivalence classes that
we use can be found in [3]_. While both the standard EM and the VBEM produce
accurate abundance estimates, those produced by the VBEM seem, generally, to be
a bit more accurate. Further, the VBEM tends to converge after fewer iterations,
so it may result in a shorter runtime; especially if you are computing many
bootstrap samples.

--numBootstraps

Salmon has the ability to optionally compute bootstrapped abundance estimates.
This is done by resampling (with replacement) from the counts assigned to
the fragment equivalence classes, and then re-running the optimization procedure,
either the EM or VBEM, for each such sample. The values of these different
bootstraps allows us to assess technical variance in the main abundance estimates
we produce. Such estimates can be useful for downstream (e.g. differential
expression) tools that can make use of such uncertainty estimates. This option
takes a positive integer that dictates the number of bootstrap samples to compute.
The more samples computed, the better the estimates of varaiance, but the
more computation (and time) required.

--numGibbsSamples

Just as with the bootstrap procedure above, this option produces samples that allow
us to estimate the variance in abundance estimates. However, in this case the
samples are generated using posterior Gibbs sampling over the fragment equivalence
classes rather than bootstrapping. We are currently analyzing these different approaches
to assess the potential trade-offs in time / accuracy. The --numBootstraps and
--numGibbsSamples options are mutually exclusive (i.e. in a given run, you must
set at most one of these options to a positive integer.)

--biasCorrect

Passing the --biasCorrect flag to Salmon will enable it to learn and correct
for sequence-specific biases in the input data. Specifically, this model will
attempt to correct for random hexamer priming bias, which results in the preferential
sequencing of fragments starting with certain nucleotide motifs. By default, Salmon
learns the sequence-specific bias parameters using 1,000,000 reads from the beginning
of the input. If you wish to change the number of samples from which the model is
learned, you can use the --numBiasSamples parameter. Note: This sequence-specific
bias model is substantially different from the bias-correction methodology that
was used in Salmon versions prior to 0.6.0 (and Sailfish versions prior to 0.9.0).
This model specifically accounts for sequence-specific bias, and should not be
prone to the over-fitting problem that was sometimes observed using the previous
bias-correction methodology.

--useFSPD

Passing the --useFSPD flag to Salmon will enable modeling of a position-specific
fragment start distribution. This is meant to model non-uniform coverage biases
that are sometimes present in RNA-seq data (e.g. 5’ or 3’ positional bias). Currently,
a single global model is learned and applied to all transcripts, as there is typically
not enough information to learn a separate model for each transcript. However, modeling
the effect in this manner can still be helpful when there is a global bias in coverage.
In the future, we will potentially be exploring more fine-grained positional bias
models.

What’s this LIBTYPE?

Salmon, like sailfish, has the user provide a description of the type of
sequencing library from which the reads come, and this contains information
about e.g. the relative orientation of paired end reads. However, we’ve
replaced the somewhat esoteric description of the library type with a simple
set of strings; each of which represents a different type of read library. This
new method of specifying the type of read library is being back-ported into
Sailfish and will be available in the next release.

The library type string consists of three parts: the relative orientation of
the reads, the strandedness of the library, and the directionality of the
reads.

The first part of the library string (relative orientation) is only provided if
the library is paired-end. The possible options are:

I = inward
O = outward
M = matching

The second part of the read library string specifies whether the protocol is
stranded or unstranded; the options are:

S = stranded
U = unstranded

If the protocol is unstranded, then we’re done. The final part of the library
string specifies the strand from which the read originates in a strand-specific
protocol — it is only provided if the library is stranded (i.e. if the
library format string is of the form S). The possible values are:

F = read 1 (or single-end read) comes from the forward strand
R = read 1 (or single-end read) comes from the reverse strand

An example of some library format strings and their interpretations are:

IU (an unstranded paired-end library where the reads face each other)

SF (a stranded single-end protocol where the reads come from the forward strand)

OSR (a stranded paired-end protocol where the reads face away from each other,
 read1 comes from reverse strand and read2 comes from the forward strand)

Note

Strand Matching

Above, when it is said that the read “comes from” a strand, we mean that
the read should align with / map to that strand. For example, for
libraries having the OSR protocol as described above, we expect that
read1 maps to the reverse strand, and read2 maps to the forward strand.

For more details on the library type, see Fragment Library Types.

Output

For details of Salmon’s different output files and their formats see :ref: FileFormats.

Misc

Salmon deals with reading from compressed read files in the same way as
sailfish — by using process substitution. Say in the
lightweigh-alignment-based salmon example above, the reads were actually in the
files reads1.fa.gz and reads2.fa.gz, then you’d run the following
command to decompress the reads “on-the-fly”:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -1 <(gzcat reads1.fa.gz) -2 <(gzcat reads2.fa.gz) -o transcripts_quant

and the gzipped files will be decompressed via separate processes and the raw
reads will be fed into salmon.

Finally, the purpose of making this software available is for people to use
it and provide feedback. The pre-print describing this method is on bioRxiv [http://biorxiv.org/content/early/2015/10/03/021592].
If you have something useful to report or just some interesting ideas or
suggestions, please contact us (rob.patro@cs.stonybrook.edu and/or
carlk@cs.cmu.edu). If you encounter any bugs, please file a detailed
bug report at the Salmon GitHub repository [https://github.com/COMBINE-lab/salmon].

 Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Salmon 0.5.0 documentation

Salmon Output File Formats

Quantification File

Salmon’s main output is its quantification file. This file is a plain-text, tab-separated file
with a single header line (which names all of the columns). This file is named quant.sf and
appears at the top-level of Salmon’s output directory. The columns appear in the following order:

	Name
	Length
	EffectiveLength
	TPM
	NumReads

Each subsequent row describes a single quantification record. The columns have
the following interpretation.

	Name —
This is the name of the target transcript provided in the input transcript database (FASTA file).

	Length —
This is the length of the target transcript in nucleotides.

	EffectiveLength —
This is the computed effective length of the target transcript. It takes into account
all factors being modeled that will effect the probability of sampling fragments from
this transcript, including the fragment length distribution and sequence-specific and
gc-fragment bias (if they are being modeled).

	TPM —
This is salmon’s estimate of the relative abundance of this transcript in units of Transcripts Per Million (TPM).
TPM is the recommended relative abundance measure to use for downstream analysis.

	NumReads —
This is salmon’s estimate of the number of reads mapping to each transcript that was quantified. It is an “estimate”
insofar as it is the expected number of reads that have originated from each transcript given the structure of the uniquely
mapping and multi-mapping reads and the relative abundance estimates for each transcript.

Command Information File

In the top-level quantification directory, there will be a file called cmd_info.json. This is a
JSON format file that records the main command line parameters with which Salmon was invoked for the
run that produced the output in this directory.

Auxiliary File

The top-level quantification directory will contain an auxiliary directory called aux (unless
the auxiliary directory name was overridden via the command line). This directory will have a number
of files (and subfolders) depending on how salmon was invoked.

fld.gz

This file contains an approximation of the observed fragment length distribution. It is a gzipped, binary file containing integer counts. The number of (signed, 32-bit) integers (with machine-native endianness) is equal to the number of bins in the fragment length distribution (1,001 by default — for fragments ranging in length from 0 to 1,000 nucleotides).

 Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Salmon 0.5.0 documentation

Fragment Library Types

There are numerous library preparation protocols for RNA-seq that result in
sequencing reads with different characteristics. For example, reads can be
single end (only one side of a fragment is recorded as a read) or paired-end
(reads are generated from both ends of a fragment). Further, the sequencing
reads themselves may be unstranded or strand-specific. Finally, paired-end
protocols will have a specified relative orientation. To characterize the
various different typs of sequencing libraries, we’ve created a miniature
“language” that allows for the succinct description of the many different types
of possible fragment libraries. For paired-end reads, the possible
orientations, along with a graphical description of what they mean, are
illustrated below:

[image: _images/ReadLibraryIllustration.png]
The library type string consists of three parts: the relative orientation of
the reads, the strandedness of the library, and the directionality of the
reads.

The first part of the library string (relative orientation) is only provided if
the library is paired-end. The possible options are:

I = inward
O = outward
M = matching

The second part of the read library string specifies whether the protocol is
stranded or unstranded; the options are:

S = stranded
U = unstranded

If the protocol is unstranded, then we’re done. The final part of the library
string specifies the strand from which the read originates in a strand-specific
protocol — it is only provided if the library is stranded (i.e. if the
library format string is of the form S). The possible values are:

F = read 1 (or single-end read) comes from the forward strand
R = read 1 (or single-end read) comes from the reverse strand

So, for example, if you wanted to specify a fragment library of strand-specific
paired-end reads, oriented toward each other, where read 1 comes from the
forward strand and read 2 comes from the reverse strand, you would specify -l
ISF on the command line. This designates that the library being processed has
the type “ISF” meaning, Inward (the relative orientation), Stranted
(the protocol is strand-specific), Forward (read 1 comes from the forward
strand).

The single end library strings are a bit simpler than their pair-end counter
parts, since there is no relative orientation of which to speak. Thus, the
only possible library format types for single-end reads are U (for
unstranded), SF (for strand-specific reads coming from the forward strand)
and SR (for strand-specific reads coming from the reverse strand).

A few more examples of some library format strings and their interpretations are:

IU (an unstranded paired-end library where the reads face each other)

SF (a stranded single-end protocol where the reads come from the forward strand)

OSR (a stranded paired-end protocol where the reads face away from each other,
 read1 comes from reverse strand and read2 comes from the forward strand)

Note

Correspondence to TopHat library types

The popular TopHat [http://ccb.jhu.edu/software/tophat/index.shtml] RNA-seq
read aligner has a different convention for specifying the format of the library.
Below is a table that provides the corresponding sailfish/salmon library format
string for each of the potential TopHat library types:

	TopHat
	Salmon (and Sailfish)

	
	Paired-end
	Single-end

	-fr-unstranded
	-l IU
	-l U

	-fr-firststrand
	-l ISR
	-l SR

	-fr-secondstrand
	-l ISF
	-l SF

The remaining salmon library format strings are not directly expressible in terms
of the TopHat library types, and so there is no direct mapping for them.

 Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Salmon 0.5.0 documentation

Index

 Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

search.html

 Navigation

 		
 index

 		Salmon 0.5.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

_images/ReadLibraryIllustration.png
~~ S~

~ N

~~ S~

ISF

ISR

<

<

O

O

MU

ou

Sequencing read

Start of End of
FASTA/Qread FASTA/Q read

license.html

 Navigation

 		
 index

 		Salmon 0.5.0 documentation »

License

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

 © Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

sailfish.html

 Navigation

 		
 index

 		Salmon 0.5.0 documentation »

Sailfish

Sailfish is a tool for transcript quantification from RNA-seq data. It
requires a set of target transcripts (either from a reference or de-novo
assembly) to quantify. All you need to run sailfish is a fasta file containing
your reference transcripts and a (set of) fasta/fastq file(s) containing your
reads. Sailfish runs in two phases; indexing and quantification. The indexing
step is independent of the reads, and only needs to be run once for a particular
set of reference transcripts and choice of k (the k-mer size). The
quantification step, obviously, is specific to the set of RNA-seq reads and is
thus run more frequently. For a more complete description of all available
options in sailfish, see the manual.

Indexing

To generate the sailfish index for your reference set of transcripts, you
should run the following command:

> sailfish index -t <ref_transcripts> -o <out_dir> -k <kmer_len>

This will build a sailfish index for k-mers of length <kmer_len> for the
reference transcripts provided in the file <ref_transcripts> and place the
index under the directory <out_dir>. There are additional options that can
be passed to the sailfish indexer (e.g. the number of threads to use). These
can be seen by executing the command sailfish index -h.

Quantification

Now that you have generated the sailfish index (say that it’s the directory
<index_dir> — this corresponds to the <out_dir> argument provided in the
previous step), you can quantify the transcript expression for a given set of
reads. To perform the quantification, you run a command like the following:

> sailfish quant -i <index_dir> -l "<libtype>" {-r <unmated> | -1 <mates1> -2 <mates2>} -o <quant_dir>

Where <index_dir> is, as described above, the location of the sailfish
index, <libtype> is a string describing the format of the fragment (read)
library (see Fragment Library Types), <unmated> is a list of files
containing unmated reads, <mates{1,2}> are lists of files containg,
respectively, the first and second mates of paired-end reads. Finally,
<quant_dir> is the directory where the output should be written. Just like the
indexing step, additional options are available, and can be viewed by running
sailfish quant -h.

When the quantification step is finished, the directory <quant_dir> will
contain a file named “quant.sf” (and, if bias correction is enabled, an
additional file names “quant_bias_corrected.sf”). This file contains the
result of the Sailfish quantification step. This file contains a number of
columns (which are listed in the last of the header lines beginning with ‘#’).
Specifically, the columns are (1) Transcript ID, (2) Transcript Length, (3)
Transcripts per Million (TPM), (4) Reads Per Kilobase per Million mapped reads
(RPKM), (5) K-mers Per Kilobase per Million mapped k-mers (KPKM), (6) Estimated
number of k-mers (an estimate of the number of k-mers drawn from this
transcript given the transcript’s relative abundance and length) and (7)
Estimated number of reads (an estimate of the number of reads drawn from this
transcript given the transcript’s relative abnundance and length). The first
two columns are self-explanatory, the next four are measures of transcript
abundance and the final is a commonly used input for differential expression
tools. The Transcripts per Million quantification number is computed as
described in [1], and is meant as an estimate of the number of transcripts, per
million observed transcripts, originating from each isoform. Its benefit over
the K/RPKM measure is that it is independent of the mean expressed transcript
length (i.e. if the mean expressed transcript length varies between samples,
for example, this alone can affect differential analysis based on the K/RPKM.)
The RPKM is a classic measure of relative transcript abundance, and is an
estimate of the number of reads per kilobase of transcript (per million mapped
reads) originating from each transcript. The KPKM should closely track the
RPKM, but is defined for very short features which are larger than the chosen
k-mer length but may be shorter than the read length. Typically, you should
prefer the KPKM measure to the RPKM measure, since the k-mer is the most
natural unit of coverage for Sailfish.

References

		[1]		Li, Bo, et al. “RNA-Seq gene expression estimation with read mapping uncertainty.”
Bioinformatics 26.4 (2010): 493-500.

 © Copyright 2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

