
Salmon Documentation
Release 0.8.1

Rob Patro, Geet Duggal, Mike Love, Rafael Irizarry and Carl Kingsford

Jun 19, 2017

Contents

1 Requirements 3
1.1 Binary Releases . 3
1.2 Requirements for Building from Source . 3

2 Installation 5

3 Salmon 7
3.1 Using Salmon . 7
3.2 Quasi-mapping-based mode (including lightweight alignment) . 8
3.3 Alignment-based mode . 10
3.4 Description of important options . 10
3.5 What’s this LIBTYPE? . 14
3.6 Output . 15
3.7 Misc . 15
3.8 References . 16

4 Salmon Output File Formats 17
4.1 Quantification File . 17
4.2 Command Information File . 17
4.3 Auxiliary Files . 18

5 Fragment Library Types 21

6 Indices and tables 25

i

ii

Salmon Documentation, Release 0.8.1

Contents:

Contents 1

Salmon Documentation, Release 0.8.1

2 Contents

CHAPTER 1

Requirements

Binary Releases

Pre-compiled binaries of the latest release of Salmon for a number different platforms are available available under
the Releases tab of Salmon’s GitHub repository. You should be able to get started quickly by finding a binary from
the list that is compatible with your platform. Additionally, you can obtain a Docker image of the latest version from
DockerHub using:

> docker pull combinelab/salmon

Requirements for Building from Source

• A C++11 conformant compiler (currently tested with GCC>=4.7 and Clang>=3.4)

• CMake. Salmon uses the CMake build system to check, fetch and install dependencies, and to compile and in-
stall Salmon. CMake is available for all major platforms (though Salmon is currently unsupported on Windows.)

3

https://github.com/COMBINE-lab/salmon/releases
https://github.com/COMBINE-lab/salmon
http://www.cmake.org

Salmon Documentation, Release 0.8.1

4 Chapter 1. Requirements

CHAPTER 2

Installation

After downloading the Salmon source distribution and unpacking it, change into the top-level directory:

> cd salmon

Then, create and out-of-source build directory and change into it:

> mkdir build
> cd build

Salmon makes extensive use of Boost. We recommend installing the most recent version (1.55) systemwide if possible.
If Boost is not installed on your system, the build process will fetch, compile and install it locally. However, if you
already have a recent version of Boost available on your system, it make sense to tell the build system to use that.

If you have Boost installed you can tell CMake where to look for it. Likewise, if you already have Intel’s Threading
Building Blocks library installed, you can tell CMake where it is as well. The flags for CMake are as follows:

• -DFETCH_BOOST=TRUE – If you don’t have Boost installed (or have an older version of it), you can provide
the FETCH_BOOST flag instead of the BOOST_ROOT variable, which will cause CMake to fetch and build
Boost locally.

• -DBOOST_ROOT=<boostdir> – Tells CMake where an existing installtion of Boost resides, and looks for the
appropritate version in <boostdir>. This is the top-level directory where Boost is installed (e.g. /opt/local).

• -DTBB_INSTALL_DIR=<tbbroot> – Tells CMake where an existing installation of Intel’s TBB is installed
(<tbbroot>), and looks for the apropriate headers and libraries there. This is the top-level directory where TBB
is installed (e.g. /opt/local).

• -DCMAKE_INSTALL_PREFIX=<install_dir> – <install_dir> is the directory to which you wish Salmon to be
installed. If you don’t specify this option, it will be installed locally in the top-level directory (i.e. the directory
directly above “build”).

There are a number of other libraries upon which Salmon depends, but CMake should fetch these for you automatically.

Setting the appropriate flags, you can then run the CMake configure step as follows:

5

http://www.boost.org
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/

Salmon Documentation, Release 0.8.1

> cmake [FLAGS] ..

The above command is the cmake configuration step, which should complain if anything goes wrong. Next, you have
to run the build step. Depending on what libraries need to be fetched and installed, this could take a while (specifically
if the installation needs to install Boost). To start the build, just run make.

> make

If the build is successful, the appropriate executables and libraries should be created. There are two points to note
about the build process. First, if the build system is downloading and compiling boost, you may see a large number of
warnings during compilation; these are normal. Second, note that CMake has colored output by default, and the steps
which create or link libraries are printed in red. This is the color chosen by CMake for linking messages, and does not
denote an error in the build process.

Finally, after everything is built, the libraries and executable can be installed with:

> make install

You can test the installation by running

> make test

This should run a simple test and tell you if it succeeded or not.

6 Chapter 2. Installation

CHAPTER 3

Salmon

Salmon is a tool for wicked-fast transcript quantification from RNA-seq data. It requires a set of target transcripts
(either from a reference or de-novo assembly) to quantify. All you need to run Salmon is a FASTA file containing your
reference transcripts and a (set of) FASTA/FASTQ file(s) containing your reads. Optionally, Salmon can make use of
pre-computed alignments (in the form of a SAM/BAM file) to the transcripts rather than the raw reads.

The quasi-mapping-based mode of Salmon runs in two phases; indexing and quantification. The indexing step is
independent of the reads, and only need to be run one for a particular set of reference transcripts. The quantification
step, obviously, is specific to the set of RNA-seq reads and is thus run more frequently. For a more complete description
of all available options in Salmon, see below.

The alignment-based mode of Salmon does not require indexing. Rather, you can simply provide Salmon with a
FASTA file of the transcripts and a SAM/BAM file containing the alignments you wish to use for quantification.

Using Salmon

As mentioned above, there are two “modes” of operation for Salmon. The first, requires you to build an index for
the transcriptome, but then subsequently processes reads directly. The second mode simply requires you to provide a
FASTA file of the transcriptome and a .sam or .bam file containing a set of alignments.

Note: Read / alignment order

Salmon, like eXpress1, uses a streaming inference method to perform transcript-level quantification. One of the
fundamental assumptions of such inference methods is that observations (i.e. reads or alignments) are made “at
random”. This means, for example, that alignments should not be sorted by target or position. If your reads or
alignments do not appear in a random order with respect to the target transcripts, please randomize / shuffle them
before performing quantification with Salmon.

Note: Number of Threads
1 Roberts, Adam, and Lior Pachter. “Streaming fragment assignment for real-time analysis of sequencing experiments.” Nature methods 10.1

(2013): 71-73.

7

Salmon Documentation, Release 0.8.1

The number of threads that Salmon can effectively make use of depends upon the mode in which it is being run. In
alignment-based mode, the main bottleneck is in parsing and decompressing the input BAM file. We make use of the
Staden IO library for SAM/BAM/CRAM I/O (CRAM is, in theory, supported, but has not been thorougly tested). This
means that multiple threads can be effectively used to aid in BAM decompression. However, we find that throwing
more than a few threads at file decompression does not result in increased processing speed. Thus, alignment-based
Salmon will only ever allocate up to 4 threads to file decompression, with the rest being allocated to quantification.
If these threads are starved, they will sleep (the quantification threads do not busy wait), but there is a point beyond
which allocating more threads will not speed up alignment-based quantification. We find that allocating 8 — 12 threads
results in the maximum speed, threads allocated above this limit will likely spend most of their time idle / sleeping.

For quasi-mapping-based Salmon, the story is somewhat different. Generally, performance continues to improve as
more threads are made available. This is because the determiniation of the potential mapping locations of each read
is, generally, the slowest step in quasi-mapping-based quantification. Since this process is trivially parallelizable (and
well-parallelized within Salmon), more threads generally equates to faster quantification. However, there may still be
a limit to the return on invested threads, when Salmon can begin to process fragments more quickly than they can be
provided via the parser.

Providing multiple read files to Salmon

Often, a single library may be split into multiple FASTA/Q files. Also, sometimes one may wish to quantify multiple
replicates or samples together, treating them as if they are one library. Salmon allows the user to provide a space-
separated list of read files to all of it’s options that expect input files (i.e. -r, -1, -2). When the input is paired-end
reads, the order of the files in the left and right lists must be the same. There are a number of ways to provide salmon
with multiple read files, and treat these as a single library. For the examples below, assume we have two replicates
lib_1 and lib_2. The left and right reads for lib_1 are lib_1_1.fq and lib_1_2.fq, respectively. The left
and right reads for lib_2 are lib_2_1.fq and lib_2_2.fq, respectively. The following are both valid ways to
input these reads to Salmon:

> salmon quant -i index -l IU -1 lib_1_1.fq lib_2_1.fq -2 lib_1_2.fq lib_2_2.fq -o out

> salmon quant -i index -l IU -1 <(cat lib_1_1.fq lib_2_1.fq) -2 <(cat lib_1_2.fq lib_
→˓2_2.fq) -o out

Similarly, both of these approaches can be adopted if the files are gzipped as well:

> salmon quant -i index -l IU -1 lib_1_1.fq.gz lib_2_1.fq.gz -2 lib_1_2.fq.gz lib_2_2.
→˓fq.gz -o out

> salmon quant -i index -l IU -1 <(gunzip -c lib_1_1.fq.gz lib_2_1.fq.gz) -2 <(gunzip
→˓-c lib_1_2.fq.gz lib_2_2.fq.gz) -o out

In each pair of commands, the first command lets Salmon natively parse the files, while the latter command creates,
on-the-fly, an input stream that consists of the concatenation of both files. Both methods work, and are acceptable
ways to merge the files. The latter method (i.e. process substitution) allows more complex processing to be done to
the reads in the substituted process before they are passed to Salmon as input, and thus, in some situations, is more
versatile.

Quasi-mapping-based mode (including lightweight alignment)

One of the novel and innovative features of Salmon is its ability to accurately quantify transcripts using quasi-
mappings. Quasi-mappings are mappings of reads to transcript positions that are computed without performing a

8 Chapter 3. Salmon

http://sourceforge.net/projects/staden/files/io_lib/

Salmon Documentation, Release 0.8.1

base-to-base alignment of the read to the transcript. Quasi-mapping is typically much faster to compute than tradi-
tional (or full) alignments, and can sometimes provide superior accuracy by being more robust to errors in the read or
genomic variation from the reference sequence. More details about quasi-mappings, and how they are computed, can
be found here.

Salmon currently supports two different methods for mapping reads to transcriptomes; (SMEM-based) lightweight-
alignment and quasi-mapping. SMEM-based mapping is the original lightweight-alignment method used by Salmon,
and quasi-mapping is a newer and considerably faster alternative. Both methods are currently exposed via the same
quant command, but the methods require different indices so that SMEM-based mapping cannot be used with a
quasi-mapping index and vice-versa.

If you want to use Salmon in quasi-mapping-based mode, then you first have to build an Salmon index for your
transcriptome. Assume that transcripts.fa contains the set of transcripts you wish to quantify. First, you run
the Salmon indexer:

> ./bin/salmon index -t transcripts.fa -i transcripts_index --type quasi -k 31

This will build the quasi-mapping-based index, using an auxiliary k-mer hash over k-mers of length 31. While quasi-
mapping will make used of arbitrarily long matches between the query and reference, the k size selected here will act
as the minimum acceptable length for a valid match. Thus, a smaller value of k may slightly improve sensitivty. We
find that a k of 31 seems to work well for reads of 75bp or longer, but you might consider a smaller k if you plan to deal
with shorter reads. Note that there is also a k parameter that can be passed to the quant command. However, this has
no effect if one is using a quasi-mapping index, as the k value provided during the index building phase overrides any k
provided during quantification in this case. Since quasi-mapping is the default index type in Salmon, you can actually
leave off the --type quasi parameter when building the index. To build a lightweight-alignment (FMD-based)
index instead, one would use the following command:

> ./bin/salmon index -t transcripts.fa -i transcripts_index --type fmd

Note that no value of k is given here. However, the SMEM-based mapping index makes use of a parameter k that is
passed in during the quant phase (the default value is 19).

Then, you can quantify any set of reads (say, paired-end reads in files reads1.fq and reads2.fq) directly against this
index using the Salmon quant command as follows:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -1 reads1.fq -2 reads2.fq -o
→˓transcripts_quant

If you are using single-end reads, then you pass them to Salmon with the -r flag like:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -r reads.fq -o transcripts_
→˓quant

This same quant command will work with either index (quasi-mapping or SMEM-based), and Salmon will automat-
ically determine the type of index being read and perform the appropriate lightweight mapping accordingly.

Note: Order of command-line parameters

The library type -l should be specified on the command line before the read files (i.e. the parameters to -1 and -2,
or -r). This is because the contents of the library type flag is used to determine how the reads should be interpreted.

You can, of course, pass a number of options to control things such as the number of threads used or the different
cutoffs used for counting reads. Just as with the alignment-based mode, after Salmon has finished running, there will
be a directory called salmon_quant, that contains a file called quant.sf containing the quantification results.

3.2. Quasi-mapping-based mode (including lightweight alignment) 9

http://bioinformatics.oxfordjournals.org/content/32/12/i192.full

Salmon Documentation, Release 0.8.1

Alignment-based mode

Say that you’ve prepared your alignments using your favorite aligner and the results are in the file aln.bam, and
assume that the sequence of the transcriptome you want to quantify is in the file transcripts.fa. You would run
Salmon as follows:

> ./bin/salmon quant -t transcripts.fa -l <LIBTYPE> -a aln.bam -o salmon_quant

The <LIBTYPE> parameter is described below and is shared between both modes of Salmon. After Salmon has
finished running, there will be a directory called salmon_quant, that contains a file called quant.sf. This
contains the quantification results for the run, and the columns it contains are similar to those of Sailfish (and self-
explanatory where they differ).

For the full set of options that can be passed to Salmon in its alignment-based mode, and a description of each, run
salmon quant --help-alignment.

Note: Genomic vs. Transcriptomic alignments

Salmon expects that the alignment files provided are with respect to the transcripts given in the corresponding fasta
file. That is, Salmon expects that the reads have been aligned directly to the transcriptome (like RSEM, eXpress, etc.)
rather than to the genome (as does, e.g. Cufflinks). If you have reads that have already been aligned to the genome,
there are currently 3 options for converting them for use with Salmon. First, you could convert the SAM/BAM file
to a FAST{A/Q} file and then use the lightweight-alignment-based mode of Salmon described below. Second, given
the converted FASTA{A/Q} file, you could re-align these converted reads directly to the transcripts with your favorite
aligner and run Salmon in alignment-based mode as described above. Third, you could use a tool like sam-xlate to try
and convert the genome-coordinate BAM files directly into transcript coordinates. This avoids the necessity of having
to re-map the reads. However, we have very limited experience with this tool so far.

Multiple alignment files

If your alignments for the sample you want to quantify appear in multiple .bam/.sam files, then you can simply
provide the Salmon -a parameter with a (space-separated) list of these files. Salmon will automatically read
through these one after the other quantifying transcripts using the alignments contained therein. However, it is
currently the case that these separate files must (1) all be of the same library type and (2) all be aligned with respect
to the same reference (i.e. the @SQ records in the header sections must be identical).

Description of important options

Salmon exposes a number of useful optional command-line parameters to the user. The particularly important ones
are explained here, but you can always run salmon quant -h to see them all.

-p / --numThreads

The number of threads that will be used for quasi-mapping, quantification, and bootstrapping / posterior sampling (if
enabled). Salmon is designed to work well with many threads, so, if you have a sufficient number of processors, larger
values here can speed up the run substantially.

Note: Default number of threads

10 Chapter 3. Salmon

https://github.com/mozack/ubu/wiki

Salmon Documentation, Release 0.8.1

The default behavior is for Salmon to probe the number of available hardware threads and

to use this number. Thus, if you want to use fewer threads (e.g., if you are running multiple instances of Salmon
simultaneously), you will likely want to set this option explicitly in accordance with the desired per-process resource
usage.

--dumpEq

If Salmon is passed the --dumpEq option, it will write a file in the auxiliary directory, called eq_classes.txt
that contains the equivalence classes and corresponding counts that were computed during quasi-mapping. The file
has a format described in Equivalence class file.

--incompatPrior

This parameter governs the a priori probability that a fragment mapping or aligning to the reference in a manner
incompatible with the prescribed library type is nonetheless the correct mapping. Note that Salmon sets this value,
by default, to a small but non-zero probability. This means that if an incompatible mapping is the only mapping for a
fragment, Salmon will still assign this fragment to the transcript. This default behavior is different than programs like
RSEM, which assign incompatible fragments a 0 probability (i.e., incompatible mappings will be discarded). If you
wish to obtain this behavior, so that only compatible mappings will be considered, you can set --incompatPrior
0.0. This will cause Salmon to only consider mappings (or alignments) that are compatible with the prescribed or
inferred library type.

--fldMean

Note : This option is only important when running Salmon with single-end reads.

Since the empirical fragment length distribution cannot be estimated from the mappings of single-end reads, the
--fldMean allows the user to set the expected mean fragment lenth of the sequencing library. This value will affect
the effective length correction, and hence the estimated effective lengths of the transcripts and the TPMs. The value
passed to --fldMean will be used as the mean of the assumed fragment length distribution (which is modeled as a
truncated Gaussian with a standard deviation given by --fldSD).

--fldSD

Note : This option is only important when running Salmon with single-end reads.

Since the empirical fragment length distribution cannot be estimated from the mappings of single-end reads, the
--fldSD allows the user to set the expected standard deviation of the fragment lenth distribution of the sequencing
library. This value will affect the effective length correction, and hence the estimated effective lengths of the transcripts
and the TPMs. The value passed to --fldSD will be used as the standard deviation of the assumed fragment length
distribution (which is modeled as a truncated Gaussan with a mean given by --fldMean).

--useVBOpt

Use the variational Bayesian EM algorithm rather than the “standard” EM algorithm to optimize abundance estimates.
The details of the VBEM algorithm can be found in3. While both the standard EM and the VBEM produce accurate
abundance estimates, there are some trade-offs between the approaches. The EM algorithm tends to produce sparser

3 Patro, Rob, et al. “Salmon provides fast and bias-aware quantification of transcript expression.” Nature Methods(2017). Advanced Online
Publication. doi: 10.1038/nmeth.4197

3.4. Description of important options 11

https://deweylab.github.io/RSEM/

Salmon Documentation, Release 0.8.1

estimates (i.e. more transcripts estimated to have 0 abundance), while the VBEM, in part due to the prior, tends to
estimate non-zero abundance for more transcripts. Conversely, the prior used in the VBEM tends to have a regularizing
effect, especially for low abundance transcripts, that leads to more consistent estimates of abundance at low expression
levels. We are currently working to analyze and understand all the tradeoffs between these different optimization
approaches. Also, the VBEM tends to converge after fewer iterations, so it may result in a shorter runtime; especially
if you are computing many bootstrap samples.

The default prior used in the VB optimization is a per-nucleotide prior of 0.001 per nucleotide. This means that a
transcript of length 1000 will have a prior count of 1 fragment, while a transcript of length 500 will have a prior
count of 0.5 fragments, etc. This behavior can be modified in two ways. First, the prior itself can be modified via
Salmon’s --vbPrior option. The argument to this option is the value you wish to place as the per-nucleotide prior.
Additonally, you can modify the behavior to use a per-transcript rather than a per-nucleotide prior by passing the
flag --perTranscriptPrior to Salmon. In this case, whatever value is set by --vbPrior will be used as the
transcript-level prior, so that the prior count is no longer dependent on the transcript length. However, the default
behavior of a per-nucleotide prior is recommended when using VB optimization.

--numBootstraps

Salmon has the ability to optionally compute bootstrapped abundance estimates. This is done by resampling (with
replacement) from the counts assigned to the fragment equivalence classes, and then re-running the optimization
procedure, either the EM or VBEM, for each such sample. The values of these different bootstraps allows us to assess
technical variance in the main abundance estimates we produce. Such estimates can be useful for downstream (e.g.
differential expression) tools that can make use of such uncertainty estimates. This option takes a positive integer
that dictates the number of bootstrap samples to compute. The more samples computed, the better the estimates of
varaiance, but the more computation (and time) required.

--numGibbsSamples

Just as with the bootstrap procedure above, this option produces samples that allow us to estimate the variance in abun-
dance estimates. However, in this case the samples are generated using posterior Gibbs sampling over the fragment
equivalence classes rather than bootstrapping. We are currently analyzing these different approaches to assess the
potential trade-offs in time / accuracy. The --numBootstraps and --numGibbsSamples options are mutually
exclusive (i.e. in a given run, you must set at most one of these options to a positive integer.)

--seqBias

Passing the --seqBias flag to Salmon will enable it to learn and correct for sequence-specific biases in the input
data. Specifically, this model will attempt to correct for random hexamer priming bias, which results in the preferential
sequencing of fragments starting with certain nucleotide motifs. By default, Salmon learns the sequence-specific bias
parameters using 1,000,000 reads from the beginning of the input. If you wish to change the number of samples
from which the model is learned, you can use the --numBiasSamples parameter. Salmon uses a variable-length
Markov Model (VLMM) to model the sequence specific biases at both the 5’ and 3’ end of sequenced fragments. This
methodology generally follows that of Roberts et al.2, though some details of the VLMM differ.

Note: This sequence-specific bias model is substantially different from the bias-correction methodology that was used
in Salmon versions prior to 0.6.0. This model specifically accounts for sequence-specific bias, and should not be prone
to the over-fitting problem that was sometimes observed using the previous bias-correction methodology.

2 Roberts, Adam, et al. “Improving RNA-Seq expression estimates by correcting for fragment bias.” Genome biology 12.3 (2011): 1.

12 Chapter 3. Salmon

Salmon Documentation, Release 0.8.1

--gcBias

Passing the --gcBias flag to Salmon will enable it to learn and correct for fragment-level GC biases in the input
data. Specifically, this model will attempt to correct for biases in how likely a sequence is to be observed based on
its internal GC content. This bias is distinct from the primer biases learned with the --seqBias option. Though
these biases are distinct, they are not completely independent. When both --seqBias and --gcBias are enabled,
Salmon will learn a conditional fragment-GC bias model. By default, Salmon will learn 3 different fragment-GC bias
models based on the GC content of the fragment start and end contexts, though this number of conditional models can
be changed with the (hidden) option --conditionalGCBins. Likewise, the number of distinct fragment GC bins
used to model the GC bias can be changed with the (hidden) option --numGCBins.

Note : In order to speed up the evaluation of the GC content of arbitrary fragments, Salmon pre-computes and stores
the cumulative GC count for each transcript. This requires an extra 4-bytes per nucleotide. While this extra memory
usage should normally be minor, it can nonetheless be controlled with the --gcSizeSamp option. This option
takes a positive integer argument i, such that Salmon stores the values of the cumulative GC count only at every
ith nucleotide. The cumulative GC count at values between the sampled positions are recomputed on-the-fly when
necessary. Using this option will reduce the memory required to store the GC information by a factor of i, but will
slow down the computation of GC-fragment content by a factor of i/2. Typically, the --gcSizeSamp can be left at
its default value of 1, but larger values can be chosen if necessary.

--posBias

Passing the --posBias flag to Salmon will enable modeling of a position-specific fragment start distribution. This
is meant to model non-uniform coverage biases that are sometimes present in RNA-seq data (e.g. 5’ or 3’ positional
bias). Currently, a small and fixed number of models are learned for different length classes of transcripts, as is done
in Roberts et al.2. Note: The positional bias model is relatively new, and is still undergoing testing. It replaces the
previous –useFSPD option, which is now deprecated. This feature should be considered as experimental in the current
release.

--biasSpeedSamp

When evaluating the bias models (the GC-fragment model specifically), Salmon must consider the probability of
generating a fragment of every possible length (with a non-trivial probability) from every position on every transcript.
This results in a process that is quadratic in the length of the transcriptome — though each evaluation itself is efficient
and the process is highly parallelized.

It is possible to speed this process up by a multiplicative factor by considering only every ith fragment length, and
interploating the intermediate results. The --biasSpeedSamp option allows the user to set this sampling factor.
Larger values speed up effective length correction, but may decrease the fidelity of bias modeling. However, reasonably
small values (e.g. 10 or less) should have only a minor effect on the computed effective lengths, and can considerably
speed up effective length correction on large transcriptomes.

--writeUnmappedNames

Passing the --writeUnmappedNames flag to Salmon will tell Salmon to write out the names of reads (or mates
in paired-end reads) that do not map to the transcriptome. When mapping paired-end reads, the entire fragment (both
ends of the pair) are identified by the name of the first read (i.e. the read appearing in the _1 file). Each line of the
umapped reads file contains the name of the unmapped read followed by a simple flag that designates how the read
failed to map completely. For single-end reads, the only valid flag is u (unmapped). However, for paired-end reads,
there are a number of different possibilities, outlined below:

3.4. Description of important options 13

Salmon Documentation, Release 0.8.1

u = The entire pair was unmapped. No mappings were found for either the left or
→˓right read.
m1 = Left orphan (mappings were found for the left (i.e. first) read, but not the
→˓right).
m2 = Right orphan (mappinds were found for the right read, but not the left).
m12 = Left and right orphans. Both the left and right read mapped, but never to the
→˓same transcript.

By reading through the file of unmapped reads and selecting the appropriate sequences from the input FASTA/Q files,
you can build an “unmapped” file that can then be used to investigate why these reads may not have mapped (e.g. poor
quality, contamination, etc.). Currently, this process must be done independently, but future versions of Salmon may
provide a script to generate this unmapped FASTA/Q file from the unmapped file and the original inputs.

--writeMappings

Passing the --writeMappings argument to Salmon will have an effect only in mapping-based mode and only when
using a quasi-index. When executed with the --writeMappings argument, Salmon will write out the mapping
information that it then processes to quantify transcript abundances. The mapping information will be written in
a SAM compatible format. If no options are provided to this argument, then the output will be written to stdout
(so that e.g. it can be piped to samtools and directly converted into BAM format). Otherwise, this argument can
optionally be provided with a filename, and the mapping information will be written to that file. Note: Because
of the way that the boost options parser that we use works, and the fact that --writeMappings has an implicit
argument of stdout, if you provide an explicit argument to --writeMappings, you must do so with the syntax
--writeMappings=<outfile> rather than the synatx --writeMappings <outfile>. This is a due to a
limitation of the parser in how the latter could be interpreted.

Note: Compatible mappings

The mapping information is computed and written before library type compatibility checks take place, thus the map-
ping file will contain information about all mappings of the reads considered by Salmon, even those that may later be
filtered out due to incompatibility with the library type.

What’s this LIBTYPE?

Salmon, has the user provide a description of the type of sequencing library from which the reads come, and this
contains information about e.g. the relative orientation of paired end reads. As of version 0.7.0, Salmon also has
the ability to automatically infer (i.e. guess) the library type based on how the first few thousand reads map to the
transcriptome. To allow Salmon to automatically infer the library type, simply provide -l A or --libType A to
Salmon. Even if you allow Salmon to infer the library type for you, you should still read the section below, so that you
can interpret how Salmon reports the library type it discovers.

Note: Automatic library type detection in alignment-based mode

The implementation of this feature involves opening the BAM file, peaking at the first record, and then closing it
to determine if the library should be treated as single-end or paired-end. Thus, in alignment-based mode automatic
library type detection will not work with an input stream. If your input is a regular file, everything should work as
expected; otherwise, you should provide the library type explicitly in alignment-based mode.

Also the automatic library type detection is performed on the basis of the alignments in the file. Thus, for example,
if the upstream aligner has been told to perform strand-aware mapping (i.e. to ignore potential alignments that don’t

14 Chapter 3. Salmon

Salmon Documentation, Release 0.8.1

map in the expected manner), but the actual library is unstranded, automatic library type detection cannot detect this.
It will attempt to detect the library type that is most consistent with the alignment that are provided.

The library type string consists of three parts: the relative orientation of the reads, the strandedness of the library, and
the directionality of the reads.

The first part of the library string (relative orientation) is only provided if the library is paired-end. The possible
options are:

I = inward
O = outward
M = matching

The second part of the read library string specifies whether the protocol is stranded or unstranded; the options are:

S = stranded
U = unstranded

If the protocol is unstranded, then we’re done. The final part of the library string specifies the strand from which the
read originates in a strand-specific protocol — it is only provided if the library is stranded (i.e. if the library format
string is of the form S). The possible values are:

F = read 1 (or single-end read) comes from the forward strand
R = read 1 (or single-end read) comes from the reverse strand

An example of some library format strings and their interpretations are:

IU (an unstranded paired-end library where the reads face each other)

SF (a stranded single-end protocol where the reads come from the forward strand)

OSR (a stranded paired-end protocol where the reads face away from each other,
read1 comes from reverse strand and read2 comes from the forward strand)

Note: Strand Matching

Above, when it is said that the read “comes from” a strand, we mean that the read should align with / map to that
strand. For example, for libraries having the OSR protocol as described above, we expect that read1 maps to the
reverse strand, and read2 maps to the forward strand.

For more details on the library type, see Fragment Library Types.

Output

For details of Salmon’s different output files and their formats see Salmon Output File Formats.

Misc

Salmon, in quasi-mapping-based mode, can accept reads from FASTA/Q format files, or directly from gzipped
FASTA/Q files (the ability to accept compressed files directly is a feature of Salmon 0.7.0 and higher). If your reads
are compressed in a different format, you can still stream them directly to Salmon by using process substitution.

3.6. Output 15

Salmon Documentation, Release 0.8.1

Say in the quasi-mapping-based Salmon example above, the reads were actually in the files reads1.fa.bz2 and
reads2.fa.bz2, then you’d run the following command to decompress the reads “on-the-fly”:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -1 <(bunzip2 -c reads1.fa.gz) -
→˓2 <(bunzip2 -c reads2.fa.bz2) -o transcripts_quant

and the bzipped files will be decompressed via separate processes and the raw reads will be fed into Salmon. Actually,
you can use this same process even with gzip compressed reads (replacing bunzip2 with gunzip or pigz -d).
Depending on the number of threads and the exact configuration, this may actually improve Salmon’s running time,
since the reads are decompressed concurrently in a separate process when you use process substitution.

Finally, the purpose of making this software available is for people to use it and provide feedback. The paper de-
scribing this method is published in Nature Methods. If you have something useful to report or just some interesting
ideas or suggestions, please contact us (rob.patro@cs.stonybrook.edu and/or carlk@cs.cmu.edu). If you encounter any
bugs, please file a detailed bug report at the Salmon GitHub repository.

References

16 Chapter 3. Salmon

http://rdcu.be/pQsw
http://rdcu.be/pQsw
https://github.com/COMBINE-lab/salmon

CHAPTER 4

Salmon Output File Formats

Quantification File

Salmon’s main output is its quantification file. This file is a plain-text, tab-separated file with a single header line
(which names all of the columns). This file is named quant.sf and appears at the top-level of Salmon’s output
directory. The columns appear in the following order:

Name Length EffectiveLength TPM NumReads

Each subsequent row describes a single quantification record. The columns have the following interpretation.

• Name — This is the name of the target transcript provided in the input transcript database (FASTA file).

• Length — This is the length of the target transcript in nucleotides.

• EffectiveLength — This is the computed effective length of the target transcript. It takes into account all factors
being modeled that will effect the probability of sampling fragments from this transcript, including the fragment
length distribution and sequence-specific and gc-fragment bias (if they are being modeled).

• TPM — This is salmon’s estimate of the relative abundance of this transcript in units of Transcripts Per Million
(TPM). TPM is the recommended relative abundance measure to use for downstream analysis.

• NumReads — This is salmon’s estimate of the number of reads mapping to each transcript that was quantified.
It is an “estimate” insofar as it is the expected number of reads that have originated from each transcript given
the structure of the uniquely mapping and multi-mapping reads and the relative abundance estimates for each
transcript.

Command Information File

In the top-level quantification directory, there will be a file called cmd_info.json. This is a JSON format file that
records the main command line parameters with which Salmon was invoked for the run that produced the output in
this directory.

17

Salmon Documentation, Release 0.8.1

Auxiliary Files

The top-level quantification directory will contain an auxiliary directory called aux_info (unless the auxiliary di-
rectory name was overridden via the command line). This directory will have a number of files (and subfolders)
depending on how salmon was invoked.

Meta information

The auxiliary directory will contain a JSON format file called meta_info.json which contains meta information
about the run, including stats such as the number of observed and mapped fragments, details of the bias modeling etc.
If Salmon was run with automatic inference of the library type (i.e. --libType A), then one particularly important
piece of information contained in this file is the inferred library type. Most of the information recorded in this file
should be self-descriptive.

Unique and ambiguous count file

The auxiliary directory also contains 2-column tab-separated file called ambig_info.tsv. This file contains infor-
mation about the number of uniquely-mapping reads as well as the total number of ambiguously-mapping reads for
each transcript. This file is provided mostly for exploratory analysis of the results; it gives some idea of the fraction of
each transcript’s estimated abundance that derives from ambiguously-mappable reads.

Observed library format counts

When run in mapping-based mode, the quantification directory will contain a file called lib_format_counts.
json. This JSON file reports the number of fragments that had at least one mapping compatible with the designated
library format, as well as the number that didn’t. It also records the strand-bias that provides some information about
how strand-specific the computed mappings were.

Finally, this file contains a count of the number of mappings that were computed that matched each possible library
type. These are counts of mappings, and so a single fragment that maps to the transcriptome in more than one way
may contribute to multiple library type counts. Note: This file is currently not generated when Salmon is run in
alignment-based mode.

Fragment length distribution

The auxiliary directory will contain a file called fld.gz. This file contains an approximation of the observed fragment
length distribution. It is a gzipped, binary file containing integer counts. The number of (signed, 32-bit) integers (with
machine-native endianness) is equal to the number of bins in the fragment length distribution (1,001 by default — for
fragments ranging in length from 0 to 1,000 nucleotides).

Sequence-specific bias files

If sequence-specific bias modeling was enabled, there will be 4 files in the auxiliary directory named obs5_seq.gz,
obs3_seq.gz, exp5_seq.gz, exp5_seq.gz. These encode the parameters of the VLMM that were learned
for the 5’ and 3’ fragment ends. Each file is a gzipped, binary file with the same format.

It begins with 3 32-bit signed integers which record the length of the context (window around the read start / end) that
is modeled, follwed by the length of the context that is to the left of the read and the length of the context that is to the
right of the read.

18 Chapter 4. Salmon Output File Formats

Salmon Documentation, Release 0.8.1

Next, the file contains 3 arrays of 32-bit signed integers (each of which have a length of equal to the context length
recorded above). The first records the order of the VLMM used at each position, the second records the shifts and the
widths required to extract each sub-context — these are implementation details.

Next, the file contains a matrix that encodes all VLMM probabilities. This starts with two signed integers of type
std::ptrdiff_t. This is a platform-specific type, but on most 64-bit systems should correspond to a 64-bit
signed integer. These numbers denote the number of rows (nrow) and columns (ncol) in the array to follow.

Next, the file contains an array of (nrow * ncol) doubles which represent a dense matrix encoding the probabilities of
the VLMM. Each row corresponds to a possible preceeding sub-context, and each column corresponds to a position
in the sequence context. Unused values (values where the length of the sub-context exceed the order of the model at
that position) contain a 0. This array can be re-shaped into a matrix of the appropriate size.

Finally, the file contains the marginalized 0:sup:th-order probabilities (i.e. the probability of each nucleotide at each
position in the context). This is stored as a 4-by-context length matrix. As before, this entry begins with two signed
integers that give the number of rows and columns, followed by an array of doubles giving the marginal probabilities.
The rows are in lexicographic order.

Fragment-GC bias files

If Salmon was run with fragment-GC bias correction enabled, the auxiliary directory will contain two files named
expected_gc.gz and observed_gc.gz. These are gzipped binary files containing, respectively, the expected
and observed fragment-GC content curves. These files both have the same form. They consist of a 32-bit signed int,
dtype which specifies if the values to follow are in logarithmic space or not. Then, the file contains two signed integers
of type std::ptrdiff which give the number of rows and columns of the matrix to follow. Finally, there is an
array of nrow by ncol doubles. Each row corresponds to a conditional fragment GC distribution, and the number of
columns is the number of bins in the learned (or expected) fragment-GC distribution.

Equivalence class file

If Salmon was run with the --dumpEq option, then a file called eq_classes.txt will exist in the auxiliary
directory. The format of that file is as follows:

N (num transcripts)
M (num equiv classes)
tn_1
tn_2
...
tn_N
eq_1_size t_11 t_12 ... count
eq_2_size t_21 t_22 ... count

That is, the file begins with a line that contains the number of transcripts (say N) then a line that contains the number of
equivalence classes (say M). It is then followed by N lines that list the transcript names — the order here is important,
because the labels of the equivalence classes are given in terms of the ID’s of the transcripts. The rank of a transcript
in this list is the ID with which it will be labeled when it appears in the label of an equivalence class. Finally, the file
contains M lines, each of which describes an equivalence class of fragments. The first entry in this line is the number
of transcripts in the label of this equivalence class (the number of different transcripts to which fragments in this class
map — call this k). The line then contains the k transcript IDs. Finally, the line contains the count of fragments in this
equivalence class (how many fragments mapped to these transcripts). The values in each such line are tab separated.

4.3. Auxiliary Files 19

Salmon Documentation, Release 0.8.1

20 Chapter 4. Salmon Output File Formats

CHAPTER 5

Fragment Library Types

There are numerous library preparation protocols for RNA-seq that result in sequencing reads with different charac-
teristics. For example, reads can be single end (only one side of a fragment is recorded as a read) or paired-end (reads
are generated from both ends of a fragment). Further, the sequencing reads themselves may be unstranded or strand-
specific. Finally, paired-end protocols will have a specified relative orientation. To characterize the various different
typs of sequencing libraries, we’ve created a miniature “language” that allows for the succinct description of the many
different types of possible fragment libraries. For paired-end reads, the possible orientations, along with a graphical
description of what they mean, are illustrated below:

21

Salmon Documentation, Release 0.8.1

The library type string consists of three parts: the relative orientation of the reads, the strandedness of the library, and
the directionality of the reads.

The first part of the library string (relative orientation) is only provided if the library is paired-end. The possible
options are:

I = inward
O = outward
M = matching

The second part of the read library string specifies whether the protocol is stranded or unstranded; the options are:

S = stranded
U = unstranded

If the protocol is unstranded, then we’re done. The final part of the library string specifies the strand from which the
read originates in a strand-specific protocol — it is only provided if the library is stranded (i.e. if the library format
string is of the form S). The possible values are:

F = read 1 (or single-end read) comes from the forward strand
R = read 1 (or single-end read) comes from the reverse strand

So, for example, if you wanted to specify a fragment library of strand-specific paired-end reads, oriented toward each
other, where read 1 comes from the forward strand and read 2 comes from the reverse strand, you would specify -l
ISF on the command line. This designates that the library being processed has the type “ISF” meaning, Inward (the
relative orientation), Stranted (the protocol is strand-specific), Forward (read 1 comes from the forward strand).

22 Chapter 5. Fragment Library Types

Salmon Documentation, Release 0.8.1

The single end library strings are a bit simpler than their pair-end counter parts, since there is no relative orientation
of which to speak. Thus, the only possible library format types for single-end reads are U (for unstranded), SF (for
strand-specific reads coming from the forward strand) and SR (for strand-specific reads coming from the reverse
strand).

A few more examples of some library format strings and their interpretations are:

IU (an unstranded paired-end library where the reads face each other)

SF (a stranded single-end protocol where the reads come from the forward strand)

OSR (a stranded paired-end protocol where the reads face away from each other,
read1 comes from reverse strand and read2 comes from the forward strand)

Note: Correspondence to TopHat library types

The popular TopHat RNA-seq read aligner has a different convention for specifying the format of the library. Below
is a table that provides the corresponding sailfish/salmon library format string for each of the potential TopHat library
types:

TopHat Salmon (and Sailfish)
Paired-end Single-end

-fr-unstranded -l IU -l U
-fr-firststrand -l ISR -l SR
-fr-secondstrand -l ISF -l SF

The remaining salmon library format strings are not directly expressible in terms of the TopHat library types, and so
there is no direct mapping for them.

23

http://ccb.jhu.edu/software/tophat/index.shtml

Salmon Documentation, Release 0.8.1

24 Chapter 5. Fragment Library Types

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

25

	Requirements
	Binary Releases
	Requirements for Building from Source

	Installation
	Salmon
	Using Salmon
	Quasi-mapping-based mode (including lightweight alignment)
	Alignment-based mode
	Description of important options
	What's this LIBTYPE?
	Output
	Misc
	References

	Salmon Output File Formats
	Quantification File
	Command Information File
	Auxiliary Files

	Fragment Library Types
	Indices and tables

